Oligocene caldera complex and calc-alkaline tuffs and lavas of the Indian Peak volcanic field, Nevada and Utah

نویسندگان

  • MYRON G. BEST
  • RICHARD H. BLANK
چکیده

The Indian Peak volcanic field is representative of the more than 50,000 km3 of ashflow tuff and tens of calderas in the Great Basin that formed during the Oligocene-early Miocene "ignimbrite flareup" in southwestern North America. The field formed about 32 to 27 Ma in the southeastern Great Basin and consists of the centrally positioned I n d i Peak caldera complex and a surrounding blanket of related ash-flow sheets distributed over an area of about 55,000 km2. The field has a volume on the order of 10,000 km3. A cluster of two obscure source areas and four calderas comprise the -80 x 120 km caldera complex. Only minor volumes of rhyolite and two pyroxene andesite lavas were extruded episodically throughout the lifetime of the magma system that formed the field, chiefly during its youth and old age. Six ash-flow sequences alternate between rhyolite and dacite in a volume ratio of about 1:8, and a culminating seventh is trachytic. The first, fourth, and sixth tuff units are of rhyolite that contains sparse to modest amounts of phenocrysts, chiefly plagioclase and biotite, and abundant lithic and pumice lapilli; these deposits are confined within the caldera complex and form multiple and compound cooling units that are normally zoned with respect to bulk chemical composition and crystal type, content, and size. The second, third, and fifth tuff sequences are of crystal-rich dacite that forms extensive simple cooling-unit outflow sheets and partial caldera fillings of compound cooling units. Each dacite unit contains similar amounts of plagioclase, biotite, hornblende, quartz, two pyroxenes, and Fe-Ti oxides; trace amounts of sanidiine and titanite also occur in the youngest. Cognate inclusions in the dacites show only slight intraand inter-unit differences in bulk chemical composition. The seventh eruptive sequence consists of several cooling units of trachydacite tuff containing small to modest amounts of plagioclase and two pyroxenes. These dominantly high-K calc-alkaline rocks are a record of the biih, maturation, and death of a large, open, continental magma system that was probably initiated and sustained by influx of mafic magma derived from a southward-migrating locus of magma production in the mantle. The small volumes of chemically diverse andesitic rocks were derived from separately evolving magma bodies but are modified representatives of the mantle power supply. Recurrent production of very large batches (some greater than 3,000 km3) of quite uniform dacite magmas appears to have required combination of andesite magma and crustal silicic material in vigorously convecting chambers. Compositional data indicate that rhyolites are polygenetic. As the main locus of mantle magma production sh ied southward, trachydacite magma could have been produced by fractionation of andesitic magma withiin the crust.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

توالی سنگشناسی و ویژگی‌های ژئوشیمیائی سنگ‌های آتشفشانی فاز دوی پالئوژن در منطقه دیلمان، البرز باختری

Deylaman area lies on Paleogene volcanic rocks in Western Alborz near the border between Central and Western Alborz structural zones. The succession of Paleogene rocks in the area is comprised of three separate phases each of which representing one stage of volcanic events. The main purpose of this paper is to study the lithologic sequence and geochemical characteristics of phase two volcanic r...

متن کامل

Magmatic characteristics and geochronology of Ordovician igneous rocks from the Cadia –Neville region, New South Wales: implications for tectonic evolution*

TheOrdovician volcanic and intrusive rocks of the Cadia–Neville region, in the southern Molong Volcanic Belt section of the Macquarie Arc in central-western New South Wales, display a temporal progression from shoshonitic basaltic volcanism (e.g. Mt Pleasant Basalt Member) in the late Darriwilian to Gisbornian (ca 460–453 Ma) to small-volume dacitic medium-K calc-alkaline magmatism (e.g. Copper...

متن کامل

The Toba Caldera Complex

The Toba Caldera in Indonesia is one of the most remarkable volcanic features formed during Quaternary geologic time. Its rich history of research for over a century has yielded important information on the physical volcanology of silicic calderas and super-eruptions, geochemical evolution of silicic magma bodies, and geophysical imaging of active sub-volcanic systems. During the past 1.3 my, t...

متن کامل

Distribution and geochemical variations among paleogene volcanic rocks from the north-central Lut block, eastern Iran

The Lut block in eastern Iran is a micro-continental block within the convergent orogen between the Arabian, Eurasian and Indian plates. Large areas of the north-central, eastern, and western Lut block are covered by volcanic rocks of Paleogene, Neogene and Quaternary age.  Peak volcanic activity took place in the north-central part of the Lut block during the Eocene, and then dramatically decr...

متن کامل

High Potash Volcanic Rocks and Pyroclastic Deposits of Damavand Volcano, Iran, an Example of Intraplate Volcanism

Damavand is a fascinating dormant stratovolcano, 60 km to the ENE of Tehran located in the Alborz Mountains. Damavand volcanic products consist of lava flows and pyroclastic fall, flow and surge deposits from different eruption cycles. The volcanic rocks ranges from trachyandesite to trachyadacite and minor basalt. The mineral assemblage consists of potash feldspar (Or43/7), Plagioclase (An25 t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002